Linear independence criteria for generalized polylogarithms with distinct shifts

نویسندگان

چکیده

For a given rational number $x$ and an integer $s\geq 1$, consider generalized polylogarithmic function, often called the Lerch defined by $$\Phi _{s}(x,z)= \sum _{k=0}^{\infty }\frac{z^{k+1}}{(k+x+1)^s}.$$ We prove linear independence

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Criteria for irrationality, linear independence, transcendence and algebraic independence

For proving linear independence of real numbers, Hermite [6] considered simultaneous approximation to these numbers by algebraic numbers. The point of view introduced by Siegel in 1929 [14] is dual (duality in the sense of convex bodies): he considers simultaneous approximation by means of independent linear forms. We define the height of a linear form L = a0X0 + · · · + amXm with complex coeff...

متن کامل

Properties of Coefficients of Certain Linear Forms in Generalized Polylogarithms

We study properties of coefficients of a linear form, originating from a multiple integral. As a corollary, we prove Vasilyev's conjecture, connected with the problem of irrationality of the Riemann zeta function at odd integers.

متن کامل

COUNTEREXAMPLES IN CHAOTIC GENERALIZED SHIFTS

‎In the following text for arbitrary $X$ with at least two elements‎, ‎nonempty countable set $Gamma$‎ ‎we make a comparative study on the collection of generalized shift dynamical systems like $(X^Gamma,sigma_varphi)$ where $varphi:GammatoGamma$ is an arbitrary self-map‎. ‎We pay attention to sub-systems and combinations of generalized shifts with counterexamples regarding Devaney‎, ‎exact Dev...

متن کامل

On linear independence of integer shifts of compactly supported distributions

Linear independence of integer shifts of compactly supported functions plays an important role in approximation theory and wavelet analysis. In this note we provide a simple proof for two known characterizations of linear independence of integer shifts of a finite number of compactly supported distributions on R. By l(Z) we denote the space of all complex-valued sequences v = {v(k)}k∈Zd : Z → C...

متن کامل

Polylogarithms, Hyperfunctions and Generalized Lipschitz Summation Formulae

A generalization of the classical Lipschitz summation formula is proposed. It involves new polylogarithmic rational functions constructed via the Fourier expansion of certain sequences of Bernoulli– type polynomials. Related families of one–dimensional hyperfunctions are also constructed.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Arithmetica

سال: 2022

ISSN: ['0065-1036', '1730-6264']

DOI: https://doi.org/10.4064/aa220307-18-10